Lecture 2 pH Calculations By/ Dr. Ekhlas Q. J.

What is pH?

$$pH = -log_{10} [H^+(aq)]$$

where [H⁺] is the concentration of hydrogen ions in mol dm⁻³

to convert pH into hydrogen ion concentration

[H⁺(aq)] = antilog (-pH)

IONIC PRODUCT OF WATER $K_w = [H^+(aq)] [OH^-(aq)] mol^2 dm^{-6}$

 $= 1 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6} \text{ (at } 25^{\circ}\text{C)}$

<u>Amphoterism</u> - an ion or molecule can act as an acid or base depending upon the reaction conditions

Calculating pH - weak acids

A weak acid is one which only partially dissociates in aqueous solution

A weak acid, HA, dissociates as follows

$$HA_{(aq)} \iff H^+_{(aq)} + A^-_{(aq)}$$
(1)

Calculating pH - weak acids

A weak acid is one which only partially dissociates in aqueous solution

A weak acid, HA, dissociates as follows	$HA_{(aq)} \iff H^+_{(aq)} + A^{(aq)}$	(1)
Applying the Equilibrium Law	$K_{a} = [H^{+}_{(aq)}] [A^{-}_{(aq)}] \text{mol dm}^{-3}$ $\underline{[HA_{(aq)}]}$	(2)
The ions are formed in equal amounts, so	$[H^{+}_{(aq)}] = [A^{-}_{(aq)}]$	
therefore	$K_{a} = [H^{+}_{(aq)}]^{2}$ $[\overline{HA}_{(aq)}]$	(3)
Rearranging (3) gives	$[H^{+}_{(aq)}]^{2} = [HA_{(aq)}] K_{a}$	
therefore	$[H_{(aq)}] = \sqrt{[HA_{(aq)}]} K_a$	
	pH = -log [H+ _(aq)]	

Calculating pH - weak acids

1111

Calculate the pH of a weak acid HX of concentration 0.1M ($K_a = 4x10^{-5}$ mol dm⁻³)

HX dissociates as follows

ANSWE

Dissociation constant for a weak acid

Substitute for X⁻ as ions are formed in equal amounts and the rearrange equation

$$HX_{(aq)} = H^{+}_{(aq)} + X_{(aq)}$$

$$K_{a} = [H^{+}_{(aq)}] [X^{-}_{(aq)}] \mod dm^{-3}$$

$$[H^{+}_{(aq)}] = \sqrt{[HX_{(aq)}]} K_{a} \mod dm^{-3}$$

ASSUMPTION

HA is a weak acid so it will not have dissociated very much. You can assume that its equilibrium concentration is approximately that of the original concentration

$$[H^{+}_{(aq)}] = \sqrt{0.1 \times 4 \times 10^{-5} \text{ mol dm}^{-3}}$$
$$= \sqrt{4.00 \times 10^{-6}} \text{ mol dm}^{-3}$$
$$= 2.00 \times 10^{-3} \text{ mol dm}^{-3}$$
$$R \quad pH = -\log [H^{+}_{(aq)}] = 2.699$$

Format for solving problems of weak acids using an equilibrium table

$$HA(aq) \rightleftharpoons H^+(aq) + A^-(aq)$$

- Initial concentration (*M*):
- Change in concentration (*M*):
- Equilibrium concentration (*M*):

- Fill in initial concentrations
- Determine concentration changes in terms of x
- Determine equilibrium concentrations in terms of initial concentrations (C_i) and x
- Substitute into the K_a expression and solve for x

Percent Ionization

- Another way to measure the strength of an acid is to determine the percentage of acid molecules that ionize when dissolved in water; this is called the **percent ionization**.
 - The higher the percent ionization, the stronger the acid. Percent lonization = $\frac{\text{molarity of ionized acid}}{\text{initial molarity of acid}} \times 100\%$
- Because [ionized acid]_{equil} = $[H_3O^+]_{equil}$

Percent Ionization = $\frac{[H_3O^+]_{equil}}{[HA]_{init}} \times 100\%$

Problem: (a) Calculate pH and (b) the fraction of CH_3CO_2H ionized at equilibrium. The concentration of CH_3CO_2H is 1 M (initial, or total). The K_a for acetic acid is 1.8 x 10⁻⁵

Estimate major species in solution CH_3CO_2H (a weak acid) and H_2O .

 Problem: (a) Calculate pH and (b) the fraction of CH_3CO_2H ionized at equilibrium.

	CH ₃ CO ₂ H ←	⇒ H [•] •	$+ CH_3CO_2$
Initial	1.0M	~ 0	0
Equilibrium	1.0 – x	X	x

Problem: (a) Calculate pH and (b) the fraction of CH_3CO_2H ionized at equilibrium.

	CH ₃ CO ₂ H ←	⇒ H ⁺ +	$-CH_3CO_2^-$
Initial	1.0M	~ 0	0
Equilibrium	1.0 – x	x	x

$$K_{a} = \frac{(x)(x)}{(1.0 - x)}$$

assume x << 1.0
 $K_{a} = \frac{(x)(x)}{(1.0)}$

$$K_{a} = 1.8x10^{-5} = \frac{(x)(x)}{(1.0)}$$
$$x = \sqrt{1.8x10^{-5}}$$
$$x = 4.3x10^{-3}$$
$$pH = -\log[4.3x10^{-3}] = 2.3$$

Question

The pH of 0.1M CH_3COOH is 2.87. What is the value of the acid dissociation constant, K_a ?

pH = -log [H₃O⁺] = 2.87 \Rightarrow [H₃O⁺] = 1.35 × 10⁻³ CH₃COOH + H₂O \rightarrow H₃O⁺ + CH₃COO⁻

 $K_{a} = [H_{3}O+][CH_{3}COO^{-}]$ $[CH_{3}COOH]$

	CH ₃ COOH	H ₃ O+	CH ₃ COO ⁻
Initial conc	0.1	0	0
Equil. Conc	0.1 – x	X	x

$$K_{a} = \frac{[1.35 \times 10^{-3}][1.35 \times 10^{-3}]}{[0.1]}$$

 $K_a = 1.8 \times 10^{-5}$

Calculate the pH at 25°C of a 0.18 *M* solution of a weak acid that has $K_a = 9.2 \times 10^{-6}$.

	HA(aq)	= H ⁺ (aq)	$+ A^{-}(aq)$
Initial concentration (<i>M</i>):	0.18	0	0
Change in concentration (<i>M</i>):	- <i>x</i>	+x	+x
Equilibrium concentration (M):	18 - x	X	X

9.2 x
$$10^{-6} = \frac{(x)(x)}{0.18 M - x}$$

Use the approximation since K_a is small compared to C_i . 9.2 x $10^{-6} = \frac{x^2}{0.18 M}$

 $1.3 \times 10^{-3} M = x$

Check the approximation:

 $\frac{1.3 \times 10^{-3} M}{0.18 M} \times 100 = 0.72\%$

0.72%<5%

Approximation is valid.

 $pH = -log(1.3 \times 10^{-3} M) = 2.89$

Acid ionization constants of some monoprotic weak acids at 25 °C

Acid	Formula	Structural Formula	Ionization Reaction	Ka
Chlorous acid	HCIO ₂	H - 0 - CI = 0	$\begin{array}{rrr} HClO_2(aq) &+ H_2O(l) \\ & \\ H_3O^+(aq) &+ ClO_2^{-}(aq) \end{array}$	$1.1 imes 10^{-2}$
Nitrous acid	HNO ₂	H - 0 - N = 0	$HNO_{2}(aq) + H_{2}O(l) =$ $H_{3}O^{+}(aq) + NO_{2}^{-}(aq)$	$4.6 imes 10^{-4}$
Hydrofluoric acid	HF	H — F	$HF(aq) + H_2O(I) =$ $H_3O^+(aq) + F^-(aq)$	$3.5 imes 10^{-4}$
Formic acid	HCHO ₂	Н — О — С — Н	$\begin{array}{r} HCHO_2(aq) &+ H_2O(l) \\ H_3O^+(aq) &+ CHO_2^-(aq) \end{array}$	$1.8 imes 10^{-4}$
Benzoic acid	HC ₇ H ₅ O ₂	H - O - C - C - C - C - C - C - C - C - C	$\begin{array}{rcl} HC_{7}H_{5}O_{2}(aq) & + \;H_{2}O(l) \\ & \\ H_{3}O^{+}(aq) & + \;C_{7}H_{5}O_{2}^{-}(aq) \end{array}$	$6.5 imes10^{-5}$
Acetic acid	$HC_2H_3O_2$	$\begin{array}{c} 0 \\ \parallel \\ H - 0 - C - C H_3 \end{array}$	$\begin{array}{rcl} HC_{2}H_{3}O_{2}(aq) &+ H_{2}O(l) \\ &\\ H_{3}O^{+}(aq) &+ C_{2}H_{3}O_{2}^{-}(aq) \end{array}$	$1.8 imes 10^{-5}$
Hypochlorous acid	HCIO	H-0-CI	$\begin{array}{rl} HCIO(aq) &+ H_2O(l) \\ \mathbf{H}_3O^+(aq) &+ CIO^-(aq) \end{array}$	$2.9 imes 10^{-8}$
Hydrocyanic acid	HCN	$H - C \equiv N$	$\begin{array}{rl} HCN(aq) &+ H_2O(l) & \longleftarrow \\ H_3O^+(aq) &+ CN^-(aq) \end{array}$	$4.9 imes10^{-10}$
Phenol	HC ₆ H ₅ O	HO - C C CH CH CH	$\begin{array}{rl} \mathrm{HC}_{6}\mathrm{H}_{5}\mathrm{O}(aq) &+ \mathrm{H}_{2}\mathrm{O}(l) \\ \mathrm{H}_{3}\mathrm{O}^{+}(aq) &+ \mathrm{C}_{6}\mathrm{H}_{5}\mathrm{O}^{-}(aq) \end{array}$	$1.3 imes 10^{-10}$

Weak Bases and Base Ionization Constants

To define the base ionization constant K_b we write: B(aq) + H₂O(l) \leftrightarrow HB⁺(aq) + OH⁻(aq)

$$K_b = \frac{[\mathrm{HB}^+][\mathrm{OH}^-]}{[\mathrm{B}]}$$

where HB+ is the conjugate acid of base B

 $[OH^{-}] = \sqrt{C_b * K_b}$

p*K*

- A way of expressing the strength of an acid or base is **p***K*.
- $pK_a = -\log(K_a), K_a = 10^{-pKa}$
- $pK_b = -\log(K_b), K_b = 10^{-pKb}$
- The stronger the acid, the smaller the pK_a .
 - Larger $K_a =$ smaller pK_a
 - Because it is the -log
- The stronger the base, the smaller the pK_b . - Larger K_b = smaller pK_b

Ionization constants of some weak bases at 25 °C

Name of base	Formula	Structure	K _b
Ethylamine	$C_2H_5NH_2$	$CH_3 - CH_2 - \overset{\cit{N-H}}{\overset{\cit{H}}{H}} H$	5.6×10^{-4}
Methylamine	CH ₃ NH ₂	$CH_3 - \ddot{N} - H$ H	$4.4 imes 10^{-4}$
Ammonia	NH ₃	$H-\ddot{N}-H$ H	1.8×10^{-5}
Pyridine	C ₅ H ₅ N	N:	1.7×10^{-9}
Aniline	C ₆ H ₅ NH ₂	Ю Н Н	$3.8 imes 10^{-10}$
Urea	H ₂ NCONH ₂	$\substack{ \substack{ \boldsymbol{H} - \boldsymbol{\ddot{N}} - \boldsymbol{C} - \boldsymbol{\ddot{N}} - \boldsymbol{H} \\ \boldsymbol{H} & \boldsymbol{H} \\ \boldsymbol{H} & \boldsymbol{H} } $	$1.5 imes 10^{-14}$

Equilibria Involving A Weak Base

You have 0.010 M NH₃. Calculate the pH. NH₃ + H₂O \longrightarrow NH₄⁺ + OH⁻

 $K_b = 1.8 \times 10^{-5}$

Step 1. Define equilibrium concentrations. $[NH_3]$ $[\mathrm{NH}_4^+]$ [OH-] 0.010 Initial 0 0 change +x+x-X 0.010 - x equilib X X

Equilibria Involving A Weak Base You have 0.010 M NH₃. Calculate the pH. $NH_3 + H_2O \implies NH_4^+ + OH^ K_{\rm h} = 1.8 \text{ x } 10^{-5}$ Step 2. Solve the equilibrium expression $K_b = 1.8 \times 10^{-5} = \frac{[NH_4^+][OH^-]}{[NH_3]} = \frac{x^2}{0.010 - x}$ Assume x is small $(100 \cdot K_{\rm h} < C_{\rm o})$, so $x = [OH^{-}] = [NH_{4}^{+}] = 4.2 \times 10^{-4} M$ and $[NH_3] = 0.010 - 4.2 \times 10^{-4} = 0.010 \text{ M}$ The approximation is valid

Equilibria Involving A Weak Base

You have 0.010 M NH₃. Calculate the pH. $NH_3 + H_2O \longrightarrow NH_4^+ + OH^ K_b = 1.8 \times 10^{-5}$

Step 3. Calculate pH $[OH^{-}] = 4.2 \times 10^{-4} M$ so pOH = - log $[OH^{-}] = 3.37$ Because pH + pOH = 14 pH = 10.63

Calculate the pH at 25°C of a 0.16 *M* solution of a weak base with a Kb of 2.9 x 10^{-11} .

Solution:	Since K _b is	so small we	can make	the math	simple.
-----------	-------------------------	-------------	----------	----------	---------

	B (+ H_2O)	\implies HB ⁺ +	OH⁻
Initial	0.16	0	0
Change	-X	+x	+x
Equilibrium	0.16 - x	X	X

 $K_b = \frac{[\text{HB}^+][\text{OH}^-]}{[\text{B}]} = \frac{x^2}{0.16 - x} \approx \frac{x^2}{0.16}$ which gives $x^2 = (0.16)\text{K}_b$ or $x = 2.15 \times 10^{-6} \Rightarrow \text{pOH} = 5.67$ Therefore pH = 14 - 5.67 = 8.33

Using pH to Determine K_b This is very similar the weak acid calculation

e.g., Determine the K_b of a weak base if a 0.35 *M* solution of the base has a pH of 11.84 at 25°C.

Solution:

 $pOH = 14 - pH = 2.16 \implies [OH^{-1}] = 10^{-2.16} = 6.92 \times 10^{-3}$ \implies HB⁺ + OH- $(+ H_2O)$ В 0.35 Initial 0 0 - 6.92 x 10⁻³ $+ 6.92 \times 10^{-3}$ + 6.92 x 10⁻³ Change 6.92×10^{-3} 6.92 x 10⁻³ Equilibrium 0.3431

$$K_b = \frac{(6.92 \times 10^{-3})^2}{0.3431} = 1.4 \times 10^{-4}$$

Determine the K_b of a weak base if a 0.50 *M* solution of the base has a pH of 9.59 at 25°C.

pH+pOH=14.009.59+pOH=14.00 pOH=4.41

 $[OH^{-}] = 10^{-pOH}$

 $[OH^{-}] = 10^{-4.41} = 3.89 \text{ x } 10^{-5} M$

- Initial concentration (*M*):
- Change in concentration (M):
- Equilibrium concentration (M):

$$B(aq) + H_2O(l) \implies HB^+(aq) + OH^-(aq)$$

0.050 M		
-3.89x10 ⁻⁵ M	+3.89x10 ⁻⁵ M	+3.89x10 ⁻⁵ M
0.050 M*	3.89x10 ⁻⁵ M	3.89x10-5 M

Equilibria Involving Weak Acids and Bases

1. The pH of a 0.10 M nicotinic acid solution is 2.92. Calculate K_a and the % ionization. 1.4x10⁻⁵ 1.2%

2.One liter of ammonia solution has pH 11 and degree of ionazition is 0.02. Calculate number of moles in solution.

3. A solution of hydrazine, N_2H_4 , is 0.025 M. $K_b = 8.5 \times 10^{-5}$. Calculate the pH and % ionization.